Что такое цветовое пространство: подробный разбор

Введение[править]

Белая стена, освещённая тремя прожекторами

Три пятна краски на белой бумаге, освещённые белым светом

Цвет — это очень субъективное понятие. В природе существуют световые волны разной частоты. Исследования показали, что определённый диапазон частот (видимый свет) воспринимается человеческим глазом. Но воспринимается не каждая волна по отдельности, а их совокупность.
Причём есть три основных частоты, «смешивая» которые можно получить почти все воспринимаемые человеком цвета. Если эти частоты излучаются отдельно (например, лазером), то воспринимаются они как красный, зелёный и синий цвета. Отсюда родилась модель RGB. Она очень удобна для технической реализации в устройствах, которые свет излучают (мониторы и проекторы). Так как там из одной точки можно «посветить» тремя цветами разной интенсивности и таким образом, используя только 3 основных цвета, получать почти весь видимый спектр.

Надо понимать разницу между возможностью контролировать свет излучаемый и поглощаемый.

Если на белую стену посветить красным, зелёным и синим прожекторами, то на пересечении областей мы получим участки, которые «излучают» сразу два цвета: красный + зелёный = yellow, зелёный + синий = cyan, синий + красный = magenta. В данном случае мы контролируем излучаемый свет, тем самым добавляя основные цвета друг к другу в нужных пропорциях (аддитивная модель).

Но представим ситуацию, когда мы не можем излучать свет самостоятельно. Это случай журналов и картин. В природе естественным является белый свет — смесь волн разной частоты, но примерно одинаковой энергии (тепловое излучение). Когда этот свет попадает на поверхность, покрытую определённым веществом, волны одних частот от неё отражаются, волны других частот поглощаются веществом. Тогда можно взять три основных вещества (краски), которые по отдельности отражают только цвета cyan, magenta и yellow, и, смешивая их в определённой пропорции, получить почти все существующие цвета. Таким образом мы контролируем поглощаемый свет, вычитая из белого ненужные нам цвета (субтрактивная модель).

Например, смешивая cyan (голубой; поглощает красный, отражает зелёный и синий) и magenta (розовый; поглощает зелёный, отражает красный и синий) мы получаем поверхность, которая поглащает красный и зелёный и, соответственно, отражает только синий. Отсюда появилась цветовая схема CMYK, которая используется при печати. «K» означает четвёртую, чёрную, краску. Её используют по техническим соображениям.

Color vision. «Eye, Brain, and Vision», Hubel D.

Вводная

Чаще всего технологию переключения формата (соотношения) пикселей можно использовать (увидеть) в видеокартах семейства AMD Radeon, в поледних версиях драйвера и при условии, что у Вас монитор подключен по HDMI и всей этой радостью умеет управлять, что существует ужо довольно и относительно повсеместно.

В частности, эта штука существует у многих на телевизоре, который, что логично, подключен куда-либо (ТВ-приставка, компьютер, etc.) по тому же HDMI например. Выглядит как переключение (обычно пультом).. Мм..

Формата изображения, мол: «Кино», «ПК» и тп, что, думаю, многие видели и наверняка заметили ни раз, когда при переключении меняется яркость, резкость, цветопередача и тп.

Давайте разбираться почему так.

СРАВНЕНИЕ СПЕКТРАЛЬНЫХ ДАННЫХ С ТРЕХКООРДИНАТНЫМИ КОЛОРИМЕТРИЧЕСКИМИ ДАННЫМИ

Итак, мы с вами рассмотрели принципиальные методы описания цвета. Эти
методы можно разделить на две категории:

  • Существуют так называемые спектральные данные, которые
    фактически описывают свойства поверхности цветного объекта, показывая,
    как эта поверхность воздействует на свет (отражает его, пропускает или
    излучает). На эти поверхностные свойства не влияют условия внешней
    среды, такие как освещение, индивидуальность восприятия каждого из
    зрителей и различия в методах трактовки цвета.
  • Наряду с этим существуют так называемые трехкоординатные
    данные
    , которые в терминах трех координат (или величин) попросту
    описывают, каким представляется цвет объекта зрителю или сенсорному
    устройству или как цвет будет воспроизводиться на
    каком-либо устройстве, например на мониторе или принтере.
    Цветовые системы CIE, такие как XYZ и L*a*b*, задают положение цвета в
    цветовом пространстве посредством трехмерных координат, в то время как
    системы воспроизведения цвета, такие как RGB и CMY(+K), описывают цвет в
    терминах трех величин, задающих количество трех составляющих, которые
    при смешивании дают тот или иной цвет.

Как формат для спецификации цветов и передачи информации о цвете
спектральные данные имеют ряд определенных преимуществ перед
трехкоординатными форматами, такими как RGB и CMYK. Прежде всего
спектральные данные являются единственным объективным описанием реального
объекта, окрашенного в тот или иной цвет. В отличие от них описания в
терминах RGB и CMYK зависят от условий осмотра объекта — от типа
устройства, воспроизводящего цвет, и типа освещения, при котором этот цвет
рассматривается.

Параметры трёх основных цветовПравить

Нормализованная спектральная чувствительность человеческих колбочек типов коротковолновых-S, средневолновых-M и длинноволновых-L (S,M,L).

цвета

В очень тусклом свете цветовое зрение снижается, а низкая яркость монохроматического ночного зрения осуществляется экстерорецепторами палочками. Таким образом, три параметра цвета, соответствующих уровней воздействия на три типа колбочек, может в принципе описать любой цвет, ощущение. Взвешивание всего спектра мощности света по индивидуальной спектральной чувствительности трех типов колбочек даёт три эффективных стимула значений; эти три значения составляют три входные сигнала (tristimulus) Спецификации объективных цветов светового спектра. Три параметра, — отмеченные как S, M и L, могут быть указаны с помощью трёхмерного пространства, называемое LMS цветовое пространство, которое является одним из многих цветовых пространств, которые были разработаны для количественного определения человеческого цветного зрения.

Цветовое пространство карты ряда физически произведенных цветов (из смешанного света, пигментов и др.) к объективным описанием цветовых ощущений, зарегистрированных в глаза, как правило, получены в условиях tristimulus ценности, но, как правило, не в LMS пространстве, определенное спектральной чувствительностью колбочкой. Три входные сигнала или The tristimulus ценности, связанные с цветовым пространством, можно представить в виде суммы трех основных цветов в tri-хроматическом аддитивном цветовом пространстве RGB. В некоторых цветовых пространствах, в том числе LMS и XYZ пространствах, основные цвета используются не реальными цветами, в том смысле, что они не могут быть получены с любого спектра света.

CIE XYZ цветовое пространство включает в себя все цветовые ощущения, которые средний человек может испытывать. Оно служит в качестве стандартных справочных, на основании которых многие другие цветовые пространства определяются. Набор подбора цветовых функций, как кривые спектральной чувствительности LMS пространства, но не ограничивается положительными значениями чувствительности, и связывает физически производимых светом спектров с конкретными трехцветными значениями.
Рассмотрим два источника света, состоящие из различных смесей различных длин волн. Такие источники света могут оказаться такого же цвета; этот эффект называется метамерией. Такие источники света имеют одинаковый видимый цвет у наблюдателя, когда они дают одинаковые значения трехцветного стимула, независимо от того, каковы спектральные распределения питания у источников .

Большинство длины волн не будет стимулировать только один тип клетки колбочки, потому что спектральные кривые чувствительности трех типов колбочек перекрываются. Некоторые трехцветные значения, таким образом, физически невозможно использовать (например, LMS трехцветных значений, которые отличны от нуля для одного компонента, и нулей для остальных). И LMS значения трехцветного сигнала для чистых спектральных цветов, в любом обычном трехцветном аддитивном цветовом пространстве (например, цветовые пространства RGB, означает, что отрицательные значения, по крайней мере, одного из трех первичных цветов, как цветности будут за пределами цветового треугольника , определенного для основных цветов. Чтобы избежать эти отрицательные значения RGB, а также иметь один компонент, который описывает воспринимаемую яркость цвета , были сформулированы «мнимые» основные цвета и соответствующие функции согласования цветов. Полученные трехцветные значения определяются в цветовом пространстве CIE 1931, в котором они обозначаются как X , Y и Z.

Chroma subsampling[править]

Chroma subsampling

Как уже упоминалось, считается, что человек сильнее воспринимает изменения яркости, чем изменения цветности. Так как YCbCr кодирует яркость (Y) и цветность (CbCr) отдельно, то эта особенность человеческого восприятия позволяет сохранять компоненты цветности с меньшим разрешением, чем компонент яркости. Называется это chroma subsampling.

Расмотрим 2 строки по 4 пикселя в каждой. В обычном случае мы имеем по 4 значения Y для каждой строки, и по 4 значения Cb и Cr для каждой из двух строк. Это описывается соотношением 4:4:4.

В общем виде записывается как J:a:b, где J — ширина рассматриваемой строки (всегда равна количеству Y-сэмплов в каждой из строк), a — количество Cb и Cr сэмплов в первой строке, b — количество Cb и Cr сэмплов во второй строке.

Например, «4:2:0»: 4(сэмпла яркости на каждую строку):2(сэмпла цветности на первую строку):0(сэмплов цветности на вторую строку — используется тот же цвет, что и в первой строке). Таким образом, на блок из четырёх пикселей приходится только один сэмпл цветности. Это наиболее используемый и поддерживаемый тип сабсэмплинга.

Несмотря на то, что визуально chroma subsampling почти не заметен, в некоторых случаях при преобразовании обратно в RGB могут возникать видимые артефакты. Проявляются они либо на видео низкого разрешения с текстом (в этом случае перед кодированием стоит сделать апскейл), либо при переходах между некоторыми цветами (чёрный-красный, зелёный-маджента), либо на специальных тестовых изображениях.

Цветовые пространства

Цветовые пространства позволяют нам отображать абсолютные цвета физического мира в системе измерений, подходящей для дисплеев. Вы слышали о «sRGB», «Adobe RGB», «Display P3» или «DCI-P3»? Это и есть цветовые пространства.

Они похожи на «см» из первого абзаца. sRGB — это стандартное цветовое пространство для многих устройств. Adobe RGB, Display P3 и DCI-P3 — это пространства с более широким цветовым охватом, которые можно найти на более новых или дорогих устройствах.

Значение слева, цветовое пространство справа

Цветовые пространства сложнее, чем единицы измерения. Они не просто определяют масштаб, они устанавливают белую точку, диапазон, масштаб и другие свойства для красного, зелёного и синего в видимом спектре.

Есть много способов визуально отразить цветовые профили, но самый удобный и распространённый — с помощью цветовой модели в 3D.

Цветное поле — sRGB, белёсое — Display P3

Перед вами разница между sRGB и Display P3. sRGB отображает меньше цветов, чем Display P3, поэтому на картинке его цветовой охват находится внутри охвата Display P3.

Любой цвет, описанный в пространстве sRGB, также можно описать в Display P3. #ff0000 в sRGB — это #ea3323 в Display P3 (значение может немного отличаться в зависимости от метода преобразования).

Однако в Display P3 есть цвета, которых нет в пространстве sRGB. Display P3 имеет более широкий цветовой охват и может отображать больше, особенно это касается глубоких красных и зелёных оттенков. #ff0000 в Display P3 нельзя превратить в значение HEX для sRGB , поскольку оно выходит за пределы диапазона sRGB.

Я надеюсь, что трёхмерная модель понятно демонстрирует важный момент — когда вы назначаете значению цвета цветовой профиль, оно становится абсолютным и более полезным. Такое значение предоставляет всю необходимую информацию устройству, отображающему картинку, чтобы воспроизвести цвет максимально точно.

sRGB как стандарт

Я написал, что у значений, указанных выше, нет единиц измерения или цветового пространства. Это не совсем верно. Во многих случаях есть цветовое пространство по умолчанию, которое предполагается, если изначально данных о цветовом пространстве нет.

В сети sRGB — стандартное цветовое пространство для CSS и SVG, хотя, скорее всего, в будущем получится использовать  другие пространства. Например, в CSS цвета пространства Display P3 можно прописать как color(p3 1.0 0 0).

На iOS и Android также по умолчанию используется sRGB, но обе ОС поддерживают более широкий цветовой охват.

Изображения и видео

Тот же концепт работает для изображений и видео.

Во многих ситуациях изображения и видео должны иметь встроенные цветовые профили. Если их нет, программа считает, что цветовое пространство — sRGB. По этой причине изображения в пользовательском интерфейсе часто идут без встроенных цветовых профилей: это экономит место на диске, а цвета всё равно будут восприняты как существующие в sRGB.

Будущее широкого цветового охвата

Раньше дизайнеры и разработчики могли хорошо работать, не имея знаний об управлении цветом, но скоро без них будет не обойтись.

Распространение дисплеев с широким цветовым охватом означает, что ошибок, связанных с управлением цветом, станет больше и они будут серьёзнее. Хороший пример — на экране новых MacBook Pro и iMac в некоторых приложениях цвета выглядят перенасыщенными.

Если вы работаете с интернет-страницами и приложениями для iOS и Android, важно понимать цветовое пространство, в котором находится проект, и настроить дизайн и среду разработки в соответствии с ним. Скорее всего, вы работаете в sRGB, но важно, чтобы это был осознанный выбор

Важно, чтобы вы знали, при каких условиях происходит преобразование цветов.

Если цвета выбраны в одном цветовом пространстве, а затем не преобразованы, а назначены из другого пространства, они будут выглядеть неправильно. Так часто бывает, когда программа не настроена на широкий цветовой охват и на протяжении всего проекта цвета несут значения для sRGB. Они будут выглядеть ярко в инструменте дизайна и тускло в работающем приложении.

CIE Стандартного наблюдателя МКО Править

Благодаря распределению колбочек в глазе, трехцветные значения зависят от поля зрения наблюдателя. Для устранения этой переменной, CIE определили функцию цвет-отображение с названием как Стандарт (колориметрический) наблюдателя (МКО), который должен представлять хроматические ответы среднего человека в пределах центрального конуса с углом в 2° внутри центральной ямки фовеа . Этот угол был выбран в связи с верой, что цветовые чувствительные колбочки находятся в зоне центрального угла 2° ямки фовеа размерами 0,2-0,4 мм в жёлтом пятне сетчатки глаза. Таким образом, CIE 1931 Стандартный наблюдатель известен как функция CIE 1931 2° Стандартных наблюдателей. Более современный, но реже используемый вариант является CIE 1964 10° стандартного наблюдателя , который является производным от работы Стайлз и Burch, и Сперанская.
Для экспериментов 10°, наблюдатели были проинструктированы, чтобы игнорировать центральное 2° место. Функция 1964 Дополнительный Стандартный наблюдатель рекомендуется при работе с более чем 4° поле зрения. Обе стандартные функции наблюдателей дискретизированы с интервалом 5 нм длин волн от 380 нм до 780 нм распространения CIE. . Стандартный наблюдатель характеризуется тремя соответствующими цветными функциями.
Вывод стандартного наблюдателя CIE от цветовое восприятие даётся ниже , после описания пространства CIE RGB.

Подборка цвета функцииПравить

Соответствующие функции стандартного цветового наблюдателя CIE

МКО в подходящие функции цвета $ \overline{x}(\lambda) $, $ \overline{y}(\lambda) $ and $ \overline{z}(\lambda) $ представляют численные описания хроматических реакций наблюдателя (описано выше). Они могут рассматриваться как спектральные кривые чувствительности трех линейных детекторов света, дающих МКО трехцветных значений X, Y и Z. В совокупности эти три функции известны в качестве стандартного наблюдателя МКО.

$ X= \int_{380}^{780} I(\lambda)\,\overline{x}(\lambda)\,d\lambda $
$ Y= \int_{380}^{780} I(\lambda)\,\overline{y}(\lambda)\,d\lambda $
$ Z= \int_{380}^{780} I(\lambda)\,\overline{z}(\lambda)\,d\lambda $

где $ \lambda\, $ длина волны эквивалентная монохроматическому свету (измеряется в нанометрах). Т.е. эквивалентна к белому, самому яркому цвету, получаемой на оси вращения Z — Value, например, цветовая система Манселла.

Другие наблюдатели, такие как для пространства CIE RGB или других цветовых пространств RGB , определяются другими наборами из трех цветов и подбора функций цветов, и приводятся к трехцветным значениям в этих других пространствах.
Значения X , Y , и Z ограничены, если спектр интенсивности $ I(\lambda)\, $ ограничен.

Качество градиентов и скорость отклика

Используемая 10-битная AHVA-матрица продемонстрировала идеальные тоновые переходы как во всех предустановленных режимах, так и после ручной настройки и аппаратной калибровки. Резкие переходы и паразитные оттенки отсутствуют.

Скорость отклика матрицы вполне типична для современных IPS-type-решений, однако изначальной проблемой SW2700PT являются хорошо заметные артефакты изображения при стандартных настройках AMA. При отключении разгона матрицы шлейф за движущимися объектами слегка уменьшается, а артефакты полностью исчезают. Почему это не сделали сами инженеры – остаётся загадкой.      

Что такое YCbCr Apple TV?

YCbCr может использовать меньшую пропускную способность, чем RGB, освобождая больше пропускной способности для других функций (разрешение, частота кадров, HDR). – RGB: всегда субдискретизация цветности 4:4:4. – YCbCr: 4:4:4, 4:2:2 (полоса пропускания 67%) или субдискретизация цветности 4:2:0 (полоса пропускания 50%).

RGB лучше, чем YPbPr? RGB использует только три основных цветовых сигнала: красный, зеленый и синий. YPbPr в основном получен из цветовой системы RGB. RGB требует большей пропускной способности для передачи видеосигналов. Из-за разделения сигналов YPbPr требует меньшая пропускная способность для передавать видеосигналы.

YPbPr лучше, чем RGB?

RGB использует только три основных цветовых сигнала: красный, зеленый и синий. YPbPr в основном получен из цветовой системы RGB. RGB требует большей пропускной способности для передачи видеосигналов. Из-за разделения сигналов YPbPr требует меньшей пропускной способности для передачи видео сигналы.

Какой цветовой формат лучше всего подходит для игр? Для обычных игр 8бит rgb полный является лучшим. Для hdr-игр лучше всего подходит 10-битная версия ycbcr limited. Причина, по которой rgb или ycbcr ограничены 10 битами, заключается в ограничении пропускной способности hdmi 2.0.

Что такое DP YCbCr sRGB?

ДП YCbCR sRGB: Выбор гамма-кривой для форматов YCbCr на входе DP в режиме SDR: если включено (по умолчанию), вход DP будет использовать гамму sRGB для отображения входов YCbCr. При отключении вход DP будет использовать гамму BT1886 для отображения входов YCbCR.

Является ли YCbCr таким же, как YUV? YUV и YCbCr разные. ЮВ — аналоговая система. YCbCr — это цифровая система, широко используемая для сжатия видео, например MPEG2.

Как вы конвертируете RGB в YCbCr в Python?

Преобразование RGB в YcrCb

  1. импортировать cv2 импортировать numpy как np из matplotlib импортировать pyplot как plt.
  2. fn3= ‘tria.jpg’ img1 = cv2. imread (fn3, cv2. CV_LOAD_IMAGE_UNCHANGED)
  3. img2=np. нули (img1. shape, np. uint8) img2 = img1 img2 = img1 img2 =img1 пл. …
  4. транскол=cv2. cvtColor (img1, cv2. cv.

Что такое CMYK в графическом дизайне? Аббревиатура CMYK означает Голубой, пурпурный, желтый и ключевой: это цвета, используемые в процессе печати. Печатный станок использует точки чернил, чтобы составить изображение из этих четырех цветов. «Ключ» на самом деле означает «черный». Он называется ключевым, потому что это основной цвет, используемый для определения результата изображения.

PNG RGB или CMYK?

Изображения Portable Network Graphics (PNG) могут содержат RGB и индексируются цвет, а также прозрачность. Хотя PNG может иметь высокое разрешение, он не поддерживает цветовое пространство CMYK.

Что такое насыщенность и оттенок? Оттенок определяется доминирующей длиной волны видимого спектра. … Насыщенность относится к количеству белого света, смешанного с оттенком.. Цвета с высокой насыщенностью, такие как кружок слева, содержат мало белого света или совсем не содержат его. Яркость относится к интенсивности, отличающейся количеством затенения, смешанного с оттенком.

Цветовые модели и пространства RGB, sRGB и Adobe RGB

Без сомнений, цветовая модель RGB является одной из самых популярных, поскольку с ней приходится часто сталкиваться при работе с графическими редакторами.

Вся суть представления цвета с помощью данной модели вытекает уже из её названия – (R) Red, (G) Green и (B) Blue (красный, зелёный и синий). Для получения любого цвета, используется процесс смешивания базовых цветов модели с различной их интенсивностью.

В модели RGB яркость каждого из основных цветов определяется значением от 0 до 255 (256 градаций). Состояние, когда все три цвета содержат максимальную яркость, создает белый цвет (RGB=255,255,255), напротив, при нулевом значении для всех трёх компонентов мы получаем черный цвет. Исходя из того, что все значения могут быть только целыми, цветовая модель RGB может воспроизвести 256*256*256=16 177 216 различных цветов.

Как было сказано, если интенсивность всех трёх цветов ровна нулю, фактически, мы выключаем освещение, то получается черный цвет (RGB=0,0,0). Тут проявляется аналогия с тремя фонарями, которые освещают заданную область разными цветами, в точке пересечения световых лучей и в зависимости от интенсивности свечения, будут возникать новые цвета. Поэтому, цветовую RGB модель принято называть аддитивной (от add — добавлять, складывать), поскольку новый цвет получается путём сложения трех основных.

Аддитивная цветовая модель RGB

RGB является адаптивной цветовой моделью, и прекрасно подходит для устройств, которые изначально отображают тёмный цвет, например, телевизор или монитор, а уже CMYK адаптирована для печатных изделий. RGB модель можно прекрасно продемонстрировать в виде куба, где отдельные оси x, y и z соответствуют заданному цвету. Фактически, значение любого цвета определяется значением трёх цветовых каналов модели RGB.

К сожалению, сама модель RGB не имеет совершенной спецификации своих основных цветов — красный, зелёный и синий, поэтому возникли разновидности цветовой RGB-модели.

Другим представителем RGB модели является Adobe RGB цветовая модель, которая была создана фирмой Adobe в 1998 году. Она использует несколько другие основные цвета и благодаря этому отображает больший диапазон цветов, чем цветовая модель sRGB, особенно зеленовато-голубые цвета. Недостаток Adobe RGB состоит в том, что большинство обычных мониторов уже не могут её показать. Есть также целый ряд других разновидностей цветовых моделей RGB, которые, однако, в цифровой фотографии используются только в исключительных случаях.

RGB изображение и его три RGB компонента

Цветовое пространство модели sRGB

Огромное развитие компьютеров, мониторов и целого рядя других объектов, работающих с цветом, привело к необходимости сформировать достаточно общее, но хорошо определённое цветовое пространство. Таким образом, компании Microsoft и Hewlett-Packard определили цветовое пространство «standart RGB» (sRGB), которое стало широко используемым стандартом для различных устройств и программ, особенно для обычного домашнего и офисного использования.

Цветовое пространство sRGB прекрасно подходит для мониторов и даже цветовым фотокамерам. Вы можете быть почти уверены, что если вы получаете данные с изображением, без дополнительного описания, то эти данные находятся в цветовом пространстве sRGB. Цветовое пространство sRGB определяется тремя основными RGB цветами, белой точкой D65 и гамма-кривой.

Цветовое пространство модели Adobe RGB

Возможности цифровых камер и ряда других объектов, с точки зрения цвета, несмотря ни на что, не ограничены гаммой sRGB. Таким образом, можно в меню самой камеры установить не только sRGB, но и цветовое пространство Adobe RGB, получив тем самым больше, чем предлагает цветовая модель sRGB, особенно в области зелёного и лазурного цвета.

Тем не менее, использование Adobe RGB не может быть в целом рекомендовано, за исключением специальных приложений, когда Вы точно знаете, что делаете. Камеры ведь не дают информацию об использовании цветового пространства Adobe RGB в JPEG файле, поэтому Adobe RGB данные на мониторе или принтере часто ошибочно истолковывают как sRGB данные. В результате получаются темные и ненасыщенные кадры.

Ссылки [ править ]

  1. ^ например, спецификация MPEG-2 , ITU H.262 2000 E стр. 44
  2. ^ «MFNominalRange (mfobjects.h) — приложения Win32» . docs.microsoft.com . Дата обращения 10 ноября 2020 .
  3. ^ Чарльз Пойнтон, Digital Video и HDTV , глава 24, стр. 291-292, Morgan Kaufmann , 2003.
  4. ^ a b «BT.2020: Значения параметров для телевизионных систем сверхвысокой четкости для производства и международного обмена программами» . Международный союз электросвязи . Июнь 2014 . Проверено 8 сентября 2014 .
  5. ^ «Телевидение с высоким динамическим диапазоном для производства и международного обмена программами» . www.itu.int . Проверено 16 января 20 .
  6. ^ «Что такое ICtCp — Введение?» .
  7. ^ Формат обмена файлами JPEG Версия 1.02
  8. ^ T.871: Информационные технологии — Цифровое сжатие и кодирование неподвижных изображений с непрерывным тоном: Формат обмена файлами JPEG (JFIF) . ITU-T . 11 сентября 2012 . Проверено 25 июля 2016 .

Практические рекомендации

Выбирать цветовое пространство следует исходя из конкретных практических соображений, а вовсе не на основании теоретического превосходства одного пространства над другим. К сожалению, гораздо чаще охват цветового пространства, используемого фотографом, коррелирует лишь с уровнем его снобизма. Чтобы с вами этого не случилось, рассмотрим те стадии цифрового фотопроцесса, которые могут быть связаны с выбором того или иного цветового пространства.

Собственно съёмка

Многие камеры позволяют фотографу выбирать между sRGB и Adobe RGB. Цветовым пространством по умолчанию является sRGB, и я настоятельно советую вам не трогать этот пункт меню, вне зависимости от того, снимаете ли вы в RAW или в JPEG.

Если вы снимаете в JPEG, то, скорее всего, делаете это для экономии времени и сил, и не склонны подолгу возиться с каждым снимком, а значит Adobe RGB вам точно ни к чему.

Если же вы снимаете в RAW, то выбор цветового пространства вообще не имеет никакого значения, поскольку RAW-файл в принципе не обладает такой категорией, как цветовое пространство – он просто содержит все данные, полученные с цифровой матрицы, которые лишь при последующей конвертации будут ужаты до заданного диапазона цветов. Даже если вы собираетесь конвертировать свои снимки в Adobe RGB или ProPhoto RGB, в настройках камеры следует оставить sRGB, чтобы избежать лишних трудностей, когда вам внезапно понадобится внутрикамерный JPEG.

Редактирование

Стандартное цветовое пространство назначается изображению только в момент конвертации RAW-файла в TIFF или JPEG. До этого момента вся обработка в RAW-конвертере происходит в некоем условном ненормированном цветовом пространстве, соответствующем цветовому охвату матрицы фотоаппарата. Именно поэтому RAW-файлы позволяют столь вольно обращаться с цветом при их обработке. По завершению редактирования, цвета, выходящие за рамки целевой палитры, автоматически подгоняются под наиболее близкие им значения в пределах выбранного вами цветового пространства.

За редким исключением, я предпочитаю конвертировать RAW-файлы в sRGB, поскольку мне нужны предельно универсальные и воспроизводимые на любом оборудовании результаты. Я вполне доволен цветами, которые я получаю в sRGB, и нахожу пространство Adobe RGB избыточным. Но если вам кажется, что использование sRGB отрицательно влияет на качество ваших фотографий, вы вправе использовать то цветовое пространство, которое сочтёте нужным.

Некоторые фотографы предпочитают конвертировать файлы в Adobe RGB для того, чтобы иметь большую свободу при последующей обработке изображения в Фотошопе. Это справедливо в том случае, если вы действительно собираетесь проводить глубокую цветокоррекцию. Лично я всю работу с цветом предпочитаю осуществлять в RAW-конвертере, поскольку это проще, удобнее и обеспечивает лучшее качество.

А что насчёт ProPhoto RGB? Забудьте о нём! Это математическая абстракция и целесообразность практического её применения ещё ниже, чем у Adobe RGB.

Кстати, если вы всё-таки вынуждены редактировать снимки в Фотошопе в пространствах, отличных от sRGB, не забывайте использовать разрядность в 16 бит на канал. Постеризация в цветовых пространствах с большим охватом становится заметной при равной разрядности раньше, чем в sRGB, поскольку одно и то же число бит используется для кодирования большего диапазона оттенков.

Печать

Использование Adobe RGB при печати фотографий может быть оправдано, но только при условии, что вы хорошо разбираетесь в управлении цветом, знаете, что такое цветовые профили и лично контролируете весь фотопроцесс, а также пользуетесь услугами серьёзной фотолаборатории, принимающей файлы в Adobe RGB и располагающей соответствующим оборудованием для их печати. Кроме того, не поленитесь провести несколько тестов, конвертируя одни и те же снимки как в sRGB, так и в Adobe RGB и печатая их на одном и том же оборудовании. Если вы не сможете увидеть разницу, то стоит ли усложнять себе жизнь? Палитры sRGB хватает для большинства сюжетов.

Интернет

Все изображения, предназначенные для публикации в интернете, должны быть в обязательном порядке преобразованы в sRGB. При использовании любого другого цветового пространства цвета в браузере могут отображаться некорректно.

***

Если я недостаточно чётко выразил свою позицию, то позволю себе повторить ещё раз: в случае малейших сомнений по поводу того, какое цветовое пространство вам следует использовать в той или иной ситуации – выбирайте sRGB, и вы убережёте себя от ненужных хлопот.

Спасибо за внимание!

Василий А.

Формат цветовой и немного кодирование

Дисплеи на HDMI могут использовать один из двух разных цветовых форматов: YCbCr и RGB. Эти цветовые форматы являются цифровым эквивалентом аналоговых сигналов Component Video (YPbPr) и D-Sub VGA (Video Graphics Array).

Если говорить проще и точнее, то это скорее способы цветового кодирования, которые по разному этот самый цвет.. Ну не то чтобы отображают, а смешивают (интерпретируют) и результат сего вы потом наблюдаете на экрана своего дисплея. Или кодируют-раскодируют, так сказать.

Формально (очень) существует два основных формата цветового кодирования, — это YCbCr и RGB. Давайте чуть отойдем от темы и поговорим про них.

Является ли 444 RGB?

Для того, чтобы получить RGB нет 444 варианта это просто говорит RGB и динамический выходной диапазон Полный. Для YCbCr у меня есть опция 444, и в ней указано, что динамический диапазон вывода ограничен. Оба варианта имеют максимальную глубину цвета на выходе 10 бит на канал.

Какой цветовой формат лучше?

Оба RGB и CMYK — режимы смешивания цветов в графическом дизайне. Для справки: цветовой режим RGB лучше всего подходит для цифровой работы, а CMYK используется для печатной продукции.

Что такое RGB и YCbCr? Разница между YCbCr и RGB заключается в том, что YCbCr представляет цвет как яркость и два сигнала цветового различия, а RGB представляет цвет как красный, зеленый и синий. В YCbCr Y — это яркость (яркость), Cb — это синий минус яркость (BY), а Cr — красный минус яркость (RY).

Как вы конвертируете RGB в YCbCr? YCBCR = rgb2ycbcr( RGB ) преобразует значения красного, зеленого и синего цвета изображения RGB в значения яркости (Y) и цветности (Cb и Cr) изображения YCbCr.

Выводы

Протестированный монитор BenQ SW2700PT – это хороший полупрофессиональный монитор, который, однако, совершенно точно не соответствует уровню по-настоящему профессиональных решений. Одной матрицы с расширенным цветовым охватом, заявленного 14-битного 3D LUT и светозащитного козырька в комплекте поставки недостаточно, чтобы модель могла претендовать на звание профессиональной. Да, у него хорошая заводская настройка, но плохо работающая аппаратная калибровка с никуда не годным приложением Palette Master Element.

Огромное количество достоинств спотыкается о плохую равномерность подсветки на чёрном поле, проявляющую себя даже в светлое время суток. Очень странным ходом производителя было активировать разгон панели, хотя без него скорость отклика выше (хорошо заметно по уменьшению шлейфов), а артефакты полностью отсутствуют. Жаль, что в BenQ отказались от показавшей хорошие результаты в случае с PG2401PT системы компенсации неравномерности подсветки. С ней у SW2700PT шансов на успех было бы значительно больше. Без неё же равномерность подсветки находится на среднем уровне.

Однако весь этот негатив имеет значение только в том случае, если рассматривать BenQ SW2700PT как профессиональное решение. Если же закрыть на это глаза, то перед нами качественный 27-дюймовый WQHD-дисплей с расширенным цветовым охватом за минимально возможные деньги.

С файлового сервера 3DNews.ru можно скачать цветовой профиль для этого монитора, который мы получили после стандартной процедуры калибровки с настройками под цветовой стандарт sRGB.

Достоинства

  • строгий современный дизайн;
  • отличное качество материалов и сборки;
  • эргономичная подставка и наличие VESA-крепления;
  • USB-хаб с двумя портами USB 3.0 и считыватель карт памяти;
  • широкий выбор интерфейсов для подключения;
  • входящий в комплект поставки качественный светозащитный козырёк;
  • возможность управления монитором с помощью физических клавиш на корпусе или внешнего блока (очень удобно);
  • высокое соответствие цветового охвата стандартам sRGB и AdobeRGB в большинстве режимов;
  • расширенный цветовой охват;
  • хорошая заводская настройка;
  • отличные градиенты при любых установках;
  • широкий диапазон изменения яркости подсветки при неизменном уровне контрастности выше заявленного в ТХ;
  • открытый доступ ко встроенному LUT с возможностью проведения аппаратной калибровки, хотя здесь есть свои но;
  • подсветка без мерцания (Flicker-Free);
  • отсутствие Cross-hatching и кристаллического эффекта;
  • отличные углы обзора;
  • одно из самых доступных решений в своём классе (от 52 000 рублей на момент тестирования).

Недостатки:

  • очень низкая равномерность подсветки на чёрном поле с хорошо заметными паразитными засветками;
  • минусы, свойственные расширенному цветовому охвату;
  • отсутствие системы компенсации неравномерности подсветки (есть у ближайших конкурентов и у BenQ PG2401PT);
  • проблемы аппаратной калибровки (слабое ПО с плохим переводом, ограниченные настройки, небольшая точность настройки, невозможность сохранить более двух профилей во встроенный LUT).
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Закон притяжения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: